If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13^2+b^2=85^2
We move all terms to the left:
13^2+b^2-(85^2)=0
We add all the numbers together, and all the variables
b^2-7056=0
a = 1; b = 0; c = -7056;
Δ = b2-4ac
Δ = 02-4·1·(-7056)
Δ = 28224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28224}=168$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-168}{2*1}=\frac{-168}{2} =-84 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+168}{2*1}=\frac{168}{2} =84 $
| s/7+38=44 | | 3x+2025=9+45x | | 14+5x=26,5 | | s/2+10=14 | | -28(w+609)=224 | | 3=17-2m | | 5=u/2+3 | | 2^x-3=(x-2)^2+1 | | z-5/3=8 | | 3n-3=5n+3-2 | | -2x+7=2x+-1 | | 7(4-7p)=175 | | 64^k=16 | | -5(t-87)=-45 | | 4+5(7-x)÷9=1 | | n/9+85=92 | | 5y-40=-5 | | X=12=2x+52 | | f/2+2=5 | | n/9+ 85=92 | | 2+x+9=13 | | 32=8(d+1) | | 2x-9=4x+6 | | 8x(-6x+12)=50 | | 4+7w=53 | | 7(n-86)=91 | | 3x-3+6x=-39 | | -6(v-73)=-96 | | 9=-x-3x-7 | | 3x+20=|x+4| | | 16+7d=72 | | 4(2z-9)=16 |